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Abstract—The determination of flame or fire edges is the
process of identifying a boundary between the area where there
is thermochemical reaction and those without. It is a precursor
to image-based flame monitoring, early fire detection, fire evalua-
tion, and the determination of flame and fire parameters. Several
traditional edge-detection methods have been tested to identify
flame edges, but the results achieved have been disappointing.
Some research works related to flame and fire edge detection were
reported for different applications; however, the methods do not
emphasize the continuity and clarity of the flame and fire edges.
A computing algorithm is thus proposed to define flame and fire
edges clearly and continuously. The algorithm detects the coarse
and superfluous edges in a flame/fire image first and then identifies
the edges of the flame/fire and removes the irrelevant artifacts. The
autoadaptive feature of the algorithm ensures that the primary
symbolic flame/fire edges are identified for different scenarios.
Experimental results for different flame images and video frames
proved the effectiveness and robustness of the algorithm.

Index Terms—Edge detection, feature extraction, fire, flame,
image edge analysis, image processing, monitoring, shape
measurement.

I. INTRODUCTION

TO MEET the stringent standards on combustion efficiency
and pollutant emissions, quantitative flame monitoring

is becoming increasingly important in fossil-fuel-fired com-
bustion systems, particularly in power generation plants [1].
This has led to a wave of research on advanced flame imaging
technologies [2], [3] both in the power generation industry and
in laboratory research. In fire safety engineering, flame image
processing is also emphasized as image-based flame detectors
are increasingly applied in fire detection systems [4]–[9]. Com-
pared to conventional flame detectors such as those based on
optical sensing, ionization current detection, and thermocouple,
image-based flame detectors are deemed more appropriate in
fire detection because of their capability for remote detection
of a small-sized fire, as well as having other advantages [10].

As one of the important steps in flame and fire image
processing, edge detection is often the precursor and lays a
foundation for other processing. There are several reasons why
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it is necessary to identify flame edges. First, the flame edges
form a basis for the quantitative determination of a range of
flame characteristic parameters such as shape, size, location,
and stability. Second, the definition of flame edges can reduce
the amount of data processing and filter out unwanted infor-
mation such as background noise within the image. In other
words, edge detection can preserve the important structural
properties of the flame and meanwhile shorten the processing
time. Third, edge detection can be used to segment a group
of flames. This is helpful for multiple flame monitoring in
some industrial furnaces where a multiburner system is used.
Furthermore, timely determination of flame edges can trigger
a fire alarm and provide the fire fighters with information on
fire type, combustible substances, exterior of the flame, etc. For
instance, the movement of a detected flame edge can be used to
distinguish real and false fire alarms [11].

A number of methods have been reported for identifying
flame edges for the geometric characterization of a flame [12],
[13] or fire [14], [15]. Adkins [16] developed a software tool to
analyze fire images, with which one can use a mouse to trace
the flame edge. It is a manual edge-detection method, but it
does show the importance and usefulness of the flame/fire edge
detection. Bheemul et al. [13] introduced an effective method
to extract flame contours by detecting the changes of the
brightness in the horizontal direction line by line over a flame
image, but the method is only suitable for simple and steady
flames. Zhang et al. [5] presented a new method using FFT and
wavelet transform for the contour analysis of forest fire images
on a video. Lu et al. [6] proposed an algorithm for early fire
detection and tested it on video clips. Toreyin et al. [7], [8], [11]
succeeded in detecting the fire in a real-time video using differ-
ent methods such as hidden Markov models and wavelet trans-
form. Chacon-Murguia and Perez-Vargas [9] managed to detect
and analyze fire information on a video through the analysis of
shape regularity and intensity saturation feature. Razmi et al.
[10] used a background subtraction and Prewitt edge-detection
approach to detecting flames for fire protection systems. She
and Huang [17] proposed a Chan–Vese active contour model
for the edge detection of flames in a power plant. Jiang and
Wang [15] also demonstrated an improved Canny edge detector
which was used to detect moving fire regions in large space fire
images. Although each of these methods has its own advantages
for the given tasks, such as fire detection or shape reconstruc-
tion in a complex background, or helping to detect an early
fire and trigger a fire alarm, they have some limitations. For
instance, some flame edges detected are unclear, discontinuous,
or do not well match the actual flame shape. For the purpose
of detecting the flame’s size and shape and, consequently, the
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Fig. 1. Representative results using the common edge-detection methods and Laplacian method. (a) Original image. (b) Sobel method. (c) Prewitt method.
(d) Roberts method. (e) Canny method. (f) Laplacian method.

geometric characteristics, it is necessary to attain the clear,
continuous and, where possible, closed edge of the flame.

In this paper, several conventional edge-detection methods
have been examined to assess their effectiveness in flame
edge identification. Despite the delicate adjustment of many
parameters in the use of these methods, the results were still
unsatisfactory. Edges extracted from nontrivial images are often
hampered by fragmentation, meaning that the edge curves are
not connected, edge segments are melted, or false edges that
do not correspond to significant phenomena in the image are
shown. It is therefore desirable to develop a dedicated edge-
detection method for flame and fire image processing. Accord-
ingly, a new computing algorithm is proposed in this paper to
process a combustion image and to identify flame/fire edges.

Section I of this paper is a background introduction and
a brief literature review of flame edge-detection methods.
Section II discusses related edge-detection methods and their
application to flame images. Section III proposes a new
methodology of detecting edges of flame images with a detailed
description of each step. Section IV presents experimental re-
sults and gives some examples of how to use the detected edges
for characterizing flames. Concluding remarks and a scope for
further research are given in Section V. The basic methodology
that is applied to develop the algorithms, together with prelim-
inary results, was reported at the 2011 IEEE International In-
strumentation and Measurement Technology Conference [25].
This paper presents a detailed description of the methodology
that has been developed along with the improvement of the
algorithm, more experimental results, and detailed discussions.

II. CONVENTIONAL METHODS OF EDGE DETECTION

AND THEIR APPLICATIONS TO FLAME IMAGES

A typical edge in an image might, for instance, be the border
between blocks of different colors or different gray levels.
Mathematically, the edges are represented by first- and second-
order derivatives. The first-order derivative (i.e., gradient) of a
2-D function f(x, y) is defined as vector [18]

∇f =
[

Gx

Gy

]
=

⌊ ∂y
∂x
∂y
∂x

⌋
(1)

where Gx and Gy are the gradients in the x and y coordinates,
respectively. The magnitude of the vector is given by
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The angle α at which the maximum rate of change occurs is

α(x, y) = tan−1

(
Gy

Gx

)
. (3)

Generally, the variance of the gray level is calculated with
one of these edge-detection operators or kernel operators. The
slopes in the x- and y-directions are combined to give the total
value of the edge strength. The edge-detection operator is then
calculated by forming a matrix centered on a pixel chosen as
the center of the matrix area. If the value of this matrix area is
above a given threshold, then the middle pixel is classified as
an edge [18].

The edge-detection methods that have been published may
be grouped into two categories according to the computation of
image gradients, i.e., the first-order or second-order derivatives.
In the first category, edges are detected through computing
a measure of edge strength with a first-order derivative ex-
pression. Examples of gradient-based edge-detection operators
include Roberts, Prewitt, and Sobel operators [23]. The Canny
edge-detection algorithm [20], an improved method using the
Sobel operator, is known to be a powerful edge-detection
method. In the second category, edges are detected by searching
a second-order derivative expression over the image, usually
the zero crossings of the Laplacian or a nonlinear differential
expression.

In the present research, these common edge-detection meth-
ods have been applied with appropriate parameters to process
typical flame images. Despite many parameters being finely and
appropriately adjusted in the use of these methods, flame edges
could not be clearly identified. Fig. 1(a)–(f) shows examples
of results obtained by the conventional edge-detection meth-
ods along with the original image. The expected flame edge
should be one and only one clear, continuous, and uninterrupted
edge. However, as the results have shown, the edges identified
using these methods are often disconnected and fragmented
[Fig. 1(b)–(f)]; some of the methods can only identify a part
of the flame edge [Fig. 1(b)–(d)] or wrongly identify small
edges that are obviously not the edges of the main flame
[Fig. 1(e)]. The results have therefore suggested that it is not
always possible to obtain ideal edges from real-life images of
moderate complexity, thus complicating the subsequent task of
interpreting the image data.

There are some other algorithms proposed for the flame/fire
edge detection for various applications [10]–[17]. Although we
are unable to test all these methods, the published results have
shown that these methods are not suitable for our purpose.
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It is therefore desirable to develop a dedicated edge-detection
method for flame/fire image processing.

III. NEW EDGE-DETECTION ALGORITHM

FOR FLAME IMAGE PROCESSING

In general, a flame region has a stronger luminance in com-
parison to its ambient background, and the boundary between
the flame region and its background is mostly continuous.
Furthermore, in most cases, there is only a main flame in the
image; otherwise, the image can be segmented so that each
segmented area contains only one main flame. Accordingly, a
computing algorithm is proposed where these features are used
to identify flame edges. The basic strategy is to detect the coarse
and superfluous edges in a flame image then identify the flame’s
principal edges and remove irrelevant ones. The algorithm can
be divided into the following logical steps.

Step 1) Adjusting the gray level of a flame image. The first
step is to adjust the gray level of a flame image
according to its statistical distribution. Considering
a discrete grayscale image x and letting ni be the
number of occurrences of gray level of i, the proba-
bility of the occurrence of a pixel of gray level i in
the image is [21]

Px(i) = p(x = i) =
ni

n
, 0 < i < L (4)

where L is the total number of gray levels in the
image, n the total number of pixels in the image,
and px(i) the histogram for pixels with i, normalized
to [0,1]. Also, the cumulative distribution function
(CDF) corresponding to px can be defined as

CDFx(i) =
i∑

j=0

px(j) (5)

which is also the accumulated normalized histogram
of the image.

Next, create a transformation of form y = T (x)
to produce a new image {y}, such that its CDF will
be linearized across the value range with a constant
number K, i.e.

CDFy(i) = iK. (6)

To map the values back to their original range, the
following transformation is applied to the result

y′ = y × (max{x} − min{x}) + min{x}. (7)

Step 2) Smoothing the image to eliminate noise. The second
step is to filter out any noise in the image before
locating and detecting any edges. A Gaussian filter
can be achieved using a simple mask. Gaussian
smoothing [26] is performed using standard convo-
lution methods after a suitable mask is selected. The
larger the width of the Gaussian mask, the lower
the detector’s sensitivity to the background noise in
the flame/fire image, but a large mask may also make
the detected flame/fire edge so precise that the lo-
calization error in the detected flame/fire edges also

Fig. 2. Discrete approximation to Gaussian function.

increases slightly with the Gaussian width. After
certain tests and comparison, the Gaussian mask, as
shown in Fig. 2, is used in the implementation.

Step 3) Using the Sobel operator for finding basic edges.
Finding basic edges is achieved by finding the gra-
dients of all the pixels in the image so as to highlight
the regions with high gray level contrast at their
edges. The algorithm then tracks the edge along
these regions and suppresses any pixels that are not
at the peaks of the gradients. If the magnitude of the
gradient is above high threshold TH , it is deemed an
edge. Moreover, if the magnitude is between the two
thresholds, i.e., the TH and TL (low threshold), it is
set to zero unless there is a path from this pixel to a
pixel with a gradient above the TL.

The Sobel operator performs a 2-D spatial gradi-
ent measurement over the image. Then, the approx-
imate absolute gradient magnitude (edge strength)
at each point can be found. It uses a pair of 3 × 3
convolution masks, one estimating the gradient in
the x-direction (columns) and another estimating
the gradient in the y-direction (rows). The Sobel
operator is expressed as follows [18]:

Mx =

⎡
⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ (8)

My =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ . (9)

Step 4) Adjusting TH and TL for better results. Better re-
sults are achieved by giving the first pair of TH and
TL initial values according to the a priori results of
similar flame images and then adjusting the values
for a better result. The “better” result is assessed by
how many edges there are: The more edge pixels
detected in the edge image, the better the parameters
are. Another threshold TE is also set to restrict the
total number of edges, i.e., if the number of edge
pixels exceeds the TE , the automatic adjustment will
be terminated. At this point, a preliminary image
with edges identified is obtained from the original
flame image. It is designated as a preliminary edge
image (PEI).

Step 5) Removing unrelated edges in the PEI.
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Fig. 3. Illustration of movement of the edge search.

a) Select any edge point in the PEI, remove that
point from the PEI, allocate a new temporary
edge image, and plot the point onto the temporary
edge image.

b) Use the selected point as the center, and search
in a 3 × 3 area. Store the location of all the
neighboring pixels if they are edge pixels. In
eight neighboring pixels, operations are taken for
the following three different cases.
i) If there is no neighboring pixel, the selected

point is an isolated point and should be re-
moved from the PEI. Terminate the search, and
go to Step 5d).

ii) If there is one neighboring pixel, the selected
point is an endpoint. It should then be removed
from the PEI, plotted onto the temporary edge
image, and added into the endpoint list. Start
the new search from the found neighbor, and
go to Step 5c).

iii) If there are two or more than two neighboring
pixels, the selected point is a normal transition
point in an edge line or an intersection with
more than three bifurcations. Set one of the
neighboring points as the new search center,
and start a new search. Store the other positions
as unchecked conjunction points, and then, go
back to Step 5b).

Fig. 3 shows how the tracing step moves
forward if the old search center is replaced by
a new search center. For instance, in the left
image of the figure, pixel “5” is the center
selected. Suppose that an edge point at pixel
“9” is found, then remove pixel “5” from the
PEI to the temporary edge image, and pixel “9”
will be the new search center. In this way, the
search moves forward pixel by pixel.

c) Check the conjunction points. If all the con-
junction points have been searched as a center,
one temporary edge image is then completed.
Compute the lengths of any two endpoints in the
temporary edge image, and pick out the longest
one. Then, go to Step 5d).

d) If all the pixels in the PEI are moved to the
temporary edge image, then go to Step 6).

Step 6) Achieving a clearly defined edge. Select the pixels
of the longest edge in the final edge image which
should have the same size as the original image. The
flowchart of the whole process is shown in Fig. 4. Fig. 4. Flowchart of the flame edge-detection algorithm.
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Fig. 5. Illustration of longest curve in a flame image with minimum D. (a) Original image. (b) TL = 0.098, TH = 0.98. (c) TL = 0.098, TH = 0.29.
(d) TL = 0.098, TH = 0.49. (e) TL = 0.2, TH = 0.29. (f) TL = 0.39, TH = 0.98. (g) TL = 0.49, TH = 0.98. (h) TL = 0.2, TH = 0.49.

In order to speed up the process of finding proper TH and TL,
a least mean square (LMS) algorithm is used, which is a class
of adaptive filters by finding the filter coefficients that relate
to producing the LMS of the error signal between the desired
result and the actual result. The idea is to use steepest descent
to find filter weights which minimize a cost function. From the
method of the steepest descent, the weight vector equation is
given by [24]

w(n + 1) = w(n) +
1
2
μ

[
−∇

(
E

{
e2(n)

})]
(10)

where μ is the step-size parameter which controls the conver-
gence characteristics of the LMS algorithm and e2(n) is the
mean square error between the former output y(n) and the
reference signal which is given by

e2(n) =
[
d∗(n) − whx(n)

]2
. (11)

The gradient vector in the aforementioned weight update
equation can be computed as

∇w

(
E

{
e2(n)

})
= −2r(n) + 2R(n) (12)

where r(n) and R(n) are covariance matrices which are defined
as follows:

r(n) =x(n)d∗(n) (13)
R(n) =x(n)xh(n). (14)

Moreover, the weight update can be given by

w(n + 1) = w(n) + μx(n)
[
d∗(n) − xh(n)w(n)

]
(15)

so

w(n + 1) = w(n) + μx(n)e∗(n). (16)

In this application, the two parameters TH and TL need to be
autoadjusted. Give initial TH and TL according to the a priori
results, and set one of the parameters as fixed in order to adjust
the other one. For example, suppose that TH is fixed, then TL

is adjusted in every step. The Euclidean distance of a curve’s
start point Cs and endpoint Ce, noted as D, is used as the

Fig. 6. Some of the flame edge-detection results. (Left column) Original
images. (Right column) Images with identified edges. (a) Diffusion propane
flame. (c) Partially premixed propane flame. (e) Small-scale pool fire [17]. Note
that the image in (a) is reproduced from Fig. 1).

output to judge the effectiveness of the new TL. The coordinates
of Cs(Sx, Sy) and endpoint (Ex, Ey) should be stored in the
memory in the tracing process. Thus, D can be computed as

D =
√

(Ex − Sx)2 + (Ey = Sy)2. (17)

After the LMS computation process, a suitable TL is chosen.
If D is small enough, the computation process terminates;
if D is still greater than the desired value, a further LMS
computation process is applied to TH .
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Fig. 7. Edge-detection result for a flame video. (a) Frames in a flame video. (b) Detected flame edge from the video sequence using the Canny edge-detection
method. (c) Detected flame edge from the video sequence using the proposed method.

Fig. 5 shows some of the results with the proposed method
given the fixed TH and TL. It can be seen that a pair of proper
thresholds is necessary for the integrated flame edge. As ex-
plained in Step 4), the first pair of TH and TL values is selected
according to the a priori results of similar flame images. The
a priori TH and TL will work in most situations, but there
are exceptions as the scenario may change and the flame may
change enough to make the previous threshold invalid. Fig. 5(f)
shows a closed curve, and the Euclidean distance between the
start point and the endpoint is zero, which is regarded as the
best result in the checked TH and TL region. Obviously, if
D = 0, no other adjustment of TH and TL is necessary; thus,
the autoadaptive process is over. If D is still big enough, as that
in the situation of Fig. 5(c) and (e), a further adjustment has to
be executed. The TH and TL should be adjusted in a greater

scale. When D becomes very small, for example, less than
20 pixels, the TH and TL should be adjusted through finer steps.

IV. RESULTS AND DISCUSSIONS

After implementing the algorithm as described in Section III,
thousands of flame images were processed using the algorithm
so as to evaluate its effectiveness. Most of the flame images
were taken for propane Bunsen flames burning in open air.
Some of the images were attained from the Internet with
courtesy of permission of use. The desktop computer used has
a 2.66-GHz Intel Quad CPU and can detect the edges of about
120 flame images of 141 × 161 pixels in 1 min. Fig. 6 shows
typical processed flame images with edges identified. In com-
parison with the test results shown in Fig. 1, it can be clearly
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Fig. 8. Uninterrupted computing of the flame perimeters from a flame video.

observed that the developed algorithm can successfully detect
clear edges of the flame and disregard unrelated artifacts, which
common edge-detection methods cannot achieve. The proposed
method makes it much easier to distinguish the flame region
from the background. The algorithm can also be used to extract
the edges of more complex flames such as turbulent diffusion
flames or flames of pool fires [14]. The clearly defined flame
edges will form a basis for subsequent processing of the flame
images, for example, flame size computation, flame background
removal, and determination of other flame parameters [3].

Many flame videos are also tested for continuous edge de-
tection so as to evaluate the robustness of the system. Fig. 7(a)
shows a series of frames acquired from a flame video. Fig. 7(b)
and (c) shows the edge-detection results using both the Canny
edge-detection method and the proposed algorithm. It is clear
that the flame edges detected using the Canny edge-detection
method are unclear and discontinuous, while the results ob-
tained using the proposed algorithm show clear and continuous
edges with parameters automatically adapted.

With a clearly defined flame/fire edge, various flame/fire pa-
rameters can be easily computed for the shape description. For
instance, the flame area can be counted by the number of pixels
inside the flame edge; the chain coding of a flame edge can be
used to describe a 2-D flame/fire shape; the perimeter of a flame
can be achieved by the total number of pixels of the detected
flame edge boundary. Fig. 8 is an example of the uninterrupted
computing of the flame perimeters from a flame video. It would
be difficult to obtain this result without the clear edge detection.
Using the proposed edge-detection algorithm, further work can
be done to characterize the geometric features of flames/fires
and, consequently, establish their relationship with combustion
conditions such as air/fuel inputs and emissions.

To assess the antinoise effect of the algorithm, different types
of random noise are added to the flame images before the
images are processed. Fig. 9 shows an example of processing
results with pepper and salt noise added. Fig. 9(b) is the flame
edge detected from the original flame image in Fig. 9(a), while
Fig. 9(d) shows the flame edge detected from the flame image
with pepper and salt noise added. It can be seen that the shape

Fig. 9. Example of noisy and processed flame images. (a) Original image.
(b) Processed image of (a). (c) Original image with salt and pepper noise added.
(d) Processed image of (c).

detected in Fig. 9(d) is almost identical to the shape detected
in Fig. 9(b).

V. CONCLUSION

After the flame characteristics are analyzed, a new flame
edge-detection method has been developed and evaluated in
comparison with conventional methods. Experimental results
have demonstrated that the algorithm developed is effective
in identifying the edges of irregular flames. The advantage of
this method is that the flame and fire edges detected are clear
and continuous. Furthermore, with the change of scenarios, the
parameters in the algorithm can be automatically adjusted. The
clearly defined combustion region lays a good foundation for
subsequent quantification of flame parameters [27], such as
flame volume, surface area, flame spread speed, and so on. It
is envisaged that this effective flame edge-detection algorithm
can contribute to the in-depth understanding and advanced
monitoring of combustion flames. Meanwhile, the algorithm
provides a useful addition to fire image processing and analysis
in fire safety engineering. The work presented was aimed for
the processing of flame and fire images captured in laboratories.
Further work is required to evaluate the performance of the
algorithm in real-life flame detection scenarios.
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